Навигация по сайту Моя кладовка

Hi-Fi усилитель на микросхеме TDA7294

 

Вступление

И это реально! Усилитель, несмотря на относительную простоту, обеспечивает довольно высокие параметры. Вообще-то, по правде говоря, у "микросхемных" усилителей есть ряд ограничений, поэтому усилители на "рассыпухе" могут обеспечить более высокие показатели. В защиту микросхемы (а иначе почему я и сам ее использую, и другим рекомендую?) можно сказать:

В любом случае, плохо сделаный и неправильно настроенный усилитель на "рассыпухе" будет звучать хуже микросхемного. А наша задача - сделать очень хороший усилитель. Надо отметить, что звучание усилителя очень хорошее (если его правильно сделать и правильно питать), есть информация, что какая-то фирма выпускала Hi-End усилители на микросхеме TDA7294! И наш усилитель ничуть не хуже!!!

 

Основные параметры

Я специально проведу замеры параметров микросхемы и опубликую отдельно (Работа усилителя на микросхеме TDA7293 (TDA7294) на "трудную" нагрузку). Здесь же скажу, что микросхема устойчиво работала на активную нагрузку 2...24 ома, на активное сопротивление 4 ома плюс либо емкость ~15 мкФ, либо индуктивность ~1,5 мГн. Причем на емкостной и индуктивной нагрузках (не таких сильных, как описано выше) искажения оставались малыми. Нужно отметить, что величина искажений сильно зависит от источника питания, особенно на емкостной нагрузке.

Параметр
Значение
Условия измерения
Рвых.макс, Вт (долговременная синусоидальная)
36
Напряжение питания +- 22В, Rн = 4 Ома
Диапазон частот по уровню -3 дБ
9 Гц - 50 кГц
Rн = 8 Ом, Uвых = 4 В
Кг, % (программой RMAA 5.5)
0,008
Rн = 8 Ом, Рвых = 16 Вт, f = 1 кГц
Чувствительность, В
0,5
Рвых.макс = 50 Вт, Rн = 4 Ом, Uип = +-27 В

 

Схема

Схема этого усилителя - это практически повторение схемы включения, предлагаемой производителем. И это неслучайно - уж кто лучше знает, как ее включать. И наверняка не будет никаких неожиданностей из-за нестандартного включения или режима работы. Вот она, схема:

Усилитель на TDA7294

 

Признаюсь сразу - никаких 80-ти ватт (и тем более 100 Вт) от нее не получишь. Реально 40-60, но зато это будут честные долговременные ваты. В кратковременном импульсе можно получить гораздо больше, но это уже будет РМРО мощность, кстати, тоже честная (80-120 Вт). В "китайских" ватах это будет несколько тысяч, если кого интересует. Тысяч пять. Тут все сильно зависит от источника питания, и позже, я напишу, как увеличить мощность, при этом улучшив еще и качество звучания. Следите за рекламой!

 

Описание схемы

Входная цепочка R1C1 представляет собой фильтр нижних частот (ФНЧ), обрезающий все выше 90 кГц. Без него нельзя - ХХI век - это в первую очередь век высокочастотных помех. Частота среза этого фильтра довольно высока. Но это специально - я ведь не знаю, к чему будет подключаться этот усилитель. Если на входе будет стоять регулятор громкости, то в самый раз - его сопротивление добавится к R1, и частота среза снизится (оптимальное значение сопротивления регулятора громкости ~10 кОм, больше - лучше, но нарушится закон регулирования).

Далее цепочка R2C2 выполняет прямо противоположную функцию - не пропускает на вход частоты ниже 7 Гц. Если для вас это слишком низко, емкость С2 можно уменьшить. Если сильно увлечься снижением емкости, можно остаться совсем без низких. Для полного звукового диапазона С2 должно быть не менее 0,33 мкф. И помните, что у конденсаторов разброс емкостей довольно большой, поэтому если написано 0,47 мкф, то запросто может оказаться, что там 0,3! И еще. На нижней границе диапазона выходная мощность снижается в 2 раза, поэтому ее лучше выбирать пониже:

С2[мкФ] = 1000 / ( 6,28 * Fmin[Гц] * R2[кОм])

Резистор R2 задает входное сопротивление усилителя. Его величина несколько больше, чем по даташиту, но это и лучше - слишком низкое входное сопротивление может "не понравиться" источнику сигнала. Учтите, что если перед усилителем включен регулятор громкости, то его сопротивление должно быть раза в 4 меньше, чем R2, иначе изменится закон регулирования громкости (величина громкости от угла поворота регулятора). Оптимальное значение R2 лежит в диапазоне 33...68 кОм (большее сопротивление снизит помехоустойчивость).

Схема включения усилителя - неинвертирующая. Резисторы R3 и R4 создают цепь отрицательной обратной связи (ООС). Коэффициент усиления равен:

Ку = R4 / R3 + 1 = 28,5 раза = 29 дБ

Это почти равно оптимальному значению 30 дБ. Менять коэффициент усиления можно, изменяя резистор R3. Учтите, что делать Ку меньше 20 нельзя - микросхема может самовозбуждаться. Больше 60 его также делать не стОит - глубина ООС уменьшится, а искажения возрастут. При значениях сопротивлений, указанных на схеме, при входном напряжении 0,5 вольт выходная мощность на нагрузке 4 ома равна 50 Вт. Если чувствительности усилителя не хватает, то лучше использовать предварительный усилитель.

Значения сопротивлений несколько больше, чем рекомендовано производителем. Это во-первых, увеличивает входное сопротивление, что приятно для источника сигнала (для получения максимального баланса по постоянному току нужно чтобы R4 было равно R2). Во-вторых, улучшает условия работы электролитического конденсатора С3. И в-третьих, усиливает благотворное влияние С4. Об этом поподробнее. Конденсатор С3 последовательно с R3 создает 100%-ю ООС по постоянному току (так как сопротивление постоянному току у него бесконечность, и Ку получается равным единице). Чтобы влияние С3 на усиление низких частот было минимально, его емкость должна быть довольно большой. Частота, на которой влияние С3 становится заметной равна:

f [Гц] = 1000 / (6,28 * R3 [кОм] * С3 [мкФ] ) = 1,3 Гц

Эта частота и должна быть очень низкая. Дело в том, что С3 - электролитический полярный, а на него подается переменное напряжение и ток, что для него очень плохо. Поэтому чем меньше значение этого напряжения, тем меньше искажения, вносимые С3. С этой же целью его максимально допустимое напряжение выбирается довольно большим (50В), хотя напряжение на нем не превышает 100 милливольт. Очень важно, чтобы частота среза цепи R3С3 была намного ниже, чем входной цепи R2С2. Ведь когда проявляется влияние С3 из-за роста его сопротивления, то и напряжеине на нем увеличивается (выходное напряжение услителя перераспределяется между R4, R3 и С3 пропорционально их сопротивлениям). Если же на этих частотах выходное напряжение падает (из-за падения входного напряжения), то и напряжение на С3 не растет. В принципе, в качестве С3 можно использовать неполярный конденсатор, но я не могу однозначно сказать, улучшится от этого звук, или ухудшится: неполярный конденсатор это "два в одном" полярных, включенных встречно.

Конденсатор С4 шунтирует С3 на высоких частотах: у электролитов есть еще один недостаток (на самом деле недостатков много, это расплата за высокую удельную емкость) - они плохо работают на частотах выше 5-7 кГц (дорогие лучше, например Black Gate, ценой 7-12 евро за штуку неплохо работает и на 20 кГц). Пленочный конденсатор С4 "берет высокие частоты на себя", тем самым снижая искажения, вносимые на них конденсатором С3. Чем больше емкость С4 - тем лучше. А его максимальное рабочее напряжение может быть сравнительно небольшим.

Цепь С7R9 увеличивает устойчивость усилителя. В принципе усилитель очень устойчив, и без нее можно обойтись, но мне попадались экземпляры микросхем, которые без этой цепи работали хуже. Конденсатор С7 должен быть рассчитан на напряжение не ниже, чем напряжение питания.

Конденсаторы С8 и С9 осуществляют так называемую вольтодобавку. Через них часть выходного напряжения поступает обратно в предоконечный каскад и складывается в напряжением питания. В результате напряжение питания внутри микросхемы оказывается выше, чем напряжение источника питания. Это нужно потому, что выходные транзисторы обеспечивают выходное напряжение вольт на 5 меньше, чем напряжение на их входах. Таким образом, чтобы получить на выходе 25 вольт, нужно подать на затворы транзисторов напряжение 30 вольт, а где его взять? Вот и берем его с выхода. Без цепи вольтодобавки выходное напряжение микросхемы было бы вольт на 10 меньше, чем напряжение питания, а с этой цепью всего на 2-4. Пленочный конденсатор С9 берет работу на себя на высоких частотах, где С8 работает хуже. Оба конденсатора должны выдерживать напряжение не ниже, чем 1,5 напряжения питания.

Резисторы R5-R8, конденсаторы С5, С6 и диод D1 управляют режимами Mute и StdBy при включении и выключении питания (см. Режимы Mute и StandBy в микросхеме TDA7294/TDA7293). Они обеспечивают правильную последовательность включения/выключения этих режимов. Правда все отлично работает и при "неправильной" их последовательности , так что такое управление нужно больше для собственного удовольствия.

Конденсаторы С10-С13 фильтруют питание. Их использование обязательно - даже с самым наилучшим источником питания сопротивления и индуктивности соединительных проводов могут повлиять на работу усилителя. При наличии этих конденсаторов никакие провода не страшны (в разумных пределах)! Уменьшать емкости не стОит. Минимум 470 мкФ для электролитов и 1 мкФ для пленочных. При установке на плату необходимо, чтобы выводы были максимально короткими и хорошо пропаяны - не жалейте припоя. Все эти конденсаторы должны выдерживать напряжение не ниже, чем 1,5 напряжения питания.

И, наконец, резистор R10. Он служит для разделения входной и выходной земли. "На пальцах" его назначение можно объяснить так. С выхода усилителя через нагрузку на землю протекает большой ток. Может так случиться, что этот ток, протекая по "земляному" проводнику, протечет и через тот участок, по которому течет входной ток (от источника сигнала, через вход усилителя, и далее обратно к источнику по "земле"). Если бы сопротивление проводников было нулевым, то и ничего страшного. Но сопротивление хоть и маленькое, но не нулевое, поэтому на сопротивлении "земляного" провода будет появляться напряжение (закон Ома: U=I*R), которое сложится со входным. Таким образом выходной сигнал усилителя попадет на вход, причем эта обратная связь ничего хорошего не принесет, только всякую гадость. Сопротивление резистора R10 хоть и мало (оптимальное значение 1...5 Ом), но намного больше, чем сопротивление земляного проводника, и через него (резистор) во входную цепь попадет в сотни раз меньший ток, чем без него.

В принципе, при хорошей разводке платы (а она у меня хорошая) этого не произойдет, но с другой стороны, что-то подобное может случиться в "макромасштабе" по цепи источник_сигнала-усилитель-нагрузка. Резистор поможет и в этом случае. Впрочем, его можно вполне заменить перемычкой - он использован исходя из принципа "лучше перебдеть, чем недобдеть".

 

Источник питания

Усилитель питается двухполярным напряжением (т.е. это два одинаковых источника, соединенных последовательно, а их общая точка подключена к земле).

Минимальное напряжение питания по даташиту +- 10 вольт. Я лично пробовал питать от +-14 вольт - микросхема работает, но стОит ли так делать? Ведь выходная мощность получается мизерной! Максимальное напряжение питания зависит от сопротивления нагрузки (это напряжение каждого плеча источника):

Сопротивление нагрузки, Ом
Максимальное напряжение питания, В
4
27
6
31
8
35

Эта зависимость вызвана допустимым нагревом микросхемы. Если микросхема установлена на маленьком радиаторе, напряжение питания лучше снизить. Максимальная выходная мощность, получаемая от усилителя приблизительно описывается формулой:

где единицы: В, Ом, Вт (я отдельно исследую этот вопрос и опишу), а Uип - напряжения одного плеча источника питания в режиме молчания.

Мощность блока питания должна быть ватт на 20 больше, чем выходная мощность. Диоды выпрямителя рассчитаны на ток не менее 10 Ампер. Емкость конденсаторов фильтра не менее 10 000 мкФ на плечо (можно и меньше, но максимальная мощность снизится а искажения возрастут).

Нужно помнить, что напряжение выпрямителя на холостом ходу в 1,4 раза выше, чем напряжение на втоичной обмотке трансформатора, поэтому не спалите микросхему! Простая, но довольно точная программа для расчета блока питания (zip-файл около 230 кБайт). И не забывайте, что для стереоусилителя нужен вдвое более мощный блок питания (при расчете по поредлагаемой программе все учитывается автоматически).

Обязательно должен быть предохранитель как минимум в первичной обмотке трансформатора! Помните, что высокое напряжение опасно для жизни, а короткое замыкание может привести к пожару!

 

В цепь "земли" предохранитель включать нельзя!

 

От импульсного источника схема тоже работает, но тут высокие требования предъявляются к самому источнику - малые пульсации, возможность отдавать ток до 10 ампер без проблем, сильных "просадок" и срывов генерации. Помните, что высокочастотные пульсации подавляются микросхемой гораздо хуже, поэтому уровень искажений может повысится в 10-100 раз, хотя "на вид" там все в порядке. Хороший импульсный источник, пригодный для Hi-Fi аудио - это сложное и недешевое устройство, поэтому изготовить "старомодный" аналоговый блок питания будет зачастую проще и дешевле.

 

Конструкция и детали

Весь набор документации (печатная плата в формате Sprint-Layout 4.0, схема в формате pdf, расположение деталей на плате в формате gif) упакованный в архив zip ~ 120 кбайт.

Печатная плата односторонняя и имеет размеры 65х70 мм:

Плата на TDA7294  

На фото справа плата с микросхемой 7293, отличающаяся только расположением конденсаторов С8, С9.

Плата разведена с учетом всех требований, предъявляемых к разводке высококачественных усилителей. Вход разведен максимально далеко от выхода, и заключен в "экран" из разделенной земли - входной и выходной. Дорожки питания, обеспечивают максимальную эффективность фильтрующих конденсаторов (при этом длинна выводов конденсаторов С10 и С12 должна быть минимальна). В своей экспериментальной плате я установил клемники для подключения входа, выхода и питания - место под них предусмотрено (может несколько мешать конденсатор С10), но для стационарных конструкций лучше все эти провода припаять - так надежнее.

Широкие дорожки кроме низкого сопротивления обладают еще тем преимуществом, что труднее отслаиваются при перегреве. Да и при изготовлении "лазерно-утюжным" методом если где и не "пропечатается" квадрат 1 мм х 1 мм, то не страшно - все равно проводник не оборвется. Кроме того, широкий проводник лучше держит тяжелые детали (а тонкий может просто отклеиться от платы).

Дорожки рекомендуется облудить - и сопротивление меньше, и коррозия.

На плате всего одна перемычка. Она лежит под выводами микросхемы, поэтому ее нужно монтировать первой, а под выводами оставить достаточно места, чтобы не замкнуло.

Резисторы все, кроме R9 мощностью 0,12 Вт, Конденсаторы С9, С10, С12 К73-17 63В, С4 я использовал К10-47в 6,8 мкФ 25В (в кладовке завалялся... С такой емкостью даже без конденсатора С3 частота среза по цепи ООС получается 20 Гц - там, где не нужно глубоких басов, одного такого конденсатора вполне достаточно). Однако я рекомендую все конденсаторы использовать типа К73-17. Использование дорогих "аудиофильских" я считаю неоправданным экономически, а дешевые "керамические" дадут худший звук (это по идее, в принципе - пожалуйста, только помните, что некоторые из них выдерживают напряжение не более 16 вольт и в качестве С7 их использовать нельзя). Электролиты подойдут любые современные. На плате нанесена полярность подключения всех электролитических конденсаторов и диода. Диод - любой маломощный выпрямительный, выдерживающий обратное напряжение не менее 50 вольт, например 1N4001-1N4007. Высокочастотные диоды лучше не использовать.

В углах платы предусмотрено место для отверстий крепежных винтов М3 - можно крепить плату только за корпус микросхемы, но все же надежнее еще и прихватить винтами.

Микросхему обязательно установить на радиатор площадью не менее 350 см2. Лучше больше. В принципе в нее встроена тепловая защита, но судьбу лучше не искушать. Даже если предполагается активное охлаждение, все равно радиатор должен быть достаточно массивным: при импульсном тепловыделении, что характерно для музыки, тепло более эффективно отбирается теплоемкостью радиатора (т.е. большая холодная железка), нежели рассеиванием в окружающую среду.

Металлический корпус микросхемы соединен с "минусом" питания. Отсюда возникают два способа установки ее на радиатор:

  1. Через изолирующую прокладку, при этом радиатор может быть электрически соединен с корпусом.
  2. Напрямую, при этом радиатор обязательно электрически изолирован от корпуса.

Первый вариант рекомендуется, если вы собираетесь ронять в корпус металлические предметы (скрепки, монеты, отвертки), чтобы не было замыкания. При этом прокладка должна быть по возможности тоньше, а радиатор - больше.

Второй вариант (мой любимый) обеспечивает лучшее охлаждение, но требует аккуратности, например не демонтировать микросхему при включенном питании.

В обоих случаях нужно использовать теплопроводящую пасту, причем в 1-м варианте она должна быть нанесена и между корпусом микросхемы и прокладкой, и между прокладкой и радиатором.

 

Налаживание усилителя

Общение в интернете показывает, что 90% всех проблем с аппаратурой составляет ее "неналаженность". То есть, спаяв очередную схему, и не сумев ее наладить, радиолюбитель ставит на ней крест, и вовсеуслышанье объявляет схему плохой. Поэтому наладка - самый важный (и зачастую самый сложный) этап создания электронного устройства.

Правильно собранный усилитель в налаживании не нуждается. Но, поскольку никто не гарантирует, что все детали абсолютно исправны, при первом включении нужно соблюдать осторожность.

Первое включение проводится без нагрузки и с отключенным источником входного сигнала (лучше вообще закоротить вход перемычкой). Хорошо бы в цепь питания (и в "плюс" и в "минус" между источником питвния и самим усилителем) включить предохранители порядка 1А. Кратковременно (~0,5 сек.) подаем напряжение питания и убеждаемся, что ток, потребляемый от источника небольшой - предохранители не сгорают. Удобно, если в источнике есть светодиодные индикаторы - при отключении от сети, светодиоды продолжают гореть не менее 20 секунд: конденсаторы фильтра долго разряжаются маленьким током покоя микросхемы.

Если потребляемый микросхемой ток большой (больше 300 мА), то причин может быть много: КЗ в монтаже; плохой контакт в "земляном" проводе от источника; перепутаны "плюс" и "минус"; выводы микросхемы касаются перемычки; неисправна микросхема; неправильно впаяны конденсаторы С11, С13; неисправны конденсаторы С10-С13.

Убедившись, что с током покоя все ОК, смело включаем питание и измеряем постоянное напряжение на выходе. Его величина не должна превышать +-0,05 В. Большое напряжение говорит о проблемах с С3 (реже с С4), или с микросхемой. Бывали случаи, когда "межземельный" резистор либо был плохо пропаян, либо вместо 3 Ом имел сопротивление 3 кОм. При этом на выходе была постоянка 10...20 вольт. Подключив к выходу вольтметр переменного тока, убеждаемся, что переменное напряжение на выходе равно нулю (это лучше всего делать с замкнутым входом, или просто с неподключенным входным кабелем, иначе на выходе будут помехи). Наличие на выходе переменного напряжения говорит о проблемах с микросхемой, или цепями С7R9, С3R3R4, R10. К сожалению, зачастую обычные тестеры не могут измерить высокочастотное напряжение, которое появляется при самовозбуждении (до 100 кГц), поэтому лучше всего здесь использовать осциллограф.

Если и тут все в порядке, подключаем нагрузку, еще раз проверяем на отсутствие возбуждения уже с нагрузкой, и все - можно слушать!

Но лучше все же провести еще один тест. Дело в том, что самым, на мой взгляд, мерзким видом возбуждения усилителя, является "звон" - когда возбуждение появляется только при наличии сигнала, причем при его определенной амплитуде. Потому что его трудно обнаружить без осциллографа и звукового генератора (да и устранить непросто), а звук портится коллосально из-за огромных интермодуляционных искажений. Причем на слух это обычно воспринимается как "тяжелый" звук, т.е. без всяких дополнительных призвуков (т.к. частота очень высокая), поэтому слушатель и не знает, что у него усилитель возбуждается. Просто послушает, и решит, что микросхема "плохая", и "не звучит".

При правильной сборке усилителя и нормальном источнике питания такого быть не должно.

 

Однако иногда бывает, и цепь С7R9 как раз и борется с такими вещами. НО! В нормальной микросхеме все ОК и при отсутствии С7R9. Мне попадались экземпляры микросхемы со звоном, в них проблема решалась введением цепи С7R9 (поэтому я ее и использую, хоть в даташите ее и нет). Если подобная гадость имеет место даже при наличии С7R9, то можно попробовать ее устранить, "поигравшись" с сопротивлением (его можно уменьшить до 3 Ом), но я бы не советовал использовать такую микросхему - это какой-то брак, и кто его знает, что в ней еще вылезет.

Проблема в том, что "звон" можно увидеть только на осциллографе, при подаче на усилитель сигнала со звукового генератора (на реальной музыке его можно и не заметить) - а это оборудование есть далеко не у всех радиолюбителей. (Хотя, если хотите эти делом хорошо заниматься, постарайтесь такие приборы заметь, хотя бы где-то ими пользоваться). Но если желаете качественного звука - постарайтесь провериться на приборах - "звон" - коварнейшая вещь, и способен повредить качеству звучания тысячей способов.

 

К теме измерения параметров, повышения качества, использования микросхемы 7293 и проч. мы еще вернемся - следите за публикациями.

 

Счетчик